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Abstract

Many studies have explored bowed string control, first in theory, and later through experiments
and simulations. Bowing control is most commonly described in terms of 3 parameters: down-
ward bow force, bow position, and transverse bow velocity. The correlation between these pa-
rameters and the production of a note is generally referred to as the playability of the instrument.
The musically-useful region within this parameter space where Helmholtz motion is achieved has
been extensively researched. The coordination of these player-controlled parameters is crucial for
the existence of steady-state oscillations, but also for their behaviour during note onset. Time do-
main models of bowed strings require the dynamic input of these physical control parameters. A
detailed exploration of this parameter space is therefore of importance for playable physical mod-
els. In this work, a two-polarisation bowed string is coupled to a fully dynamic nonlinear lumped
bow model. A finite difference scheme is used to solve the discretised equations of motion in the
time domain. The bow-controlled input to the model is based on a two-dimensional force vector
applied to the bow itself, coupling the two string polarisations. One force component is applied
downwards, and the other orthogonally across the string axis, in contrast to the common con-
vention of imposing a downward bow force and transverse bow velocity. The new model has the
potential to allow for more realistic and dynamic gesture control. This study explores the param-
eter space implied by the model, relating it to the playability of the virtual instrument. Analysis of
the steady state bow-string dynamics leads to classification of the playing regime, and a graphi-
cal representation inspired by the well known Schelleng diagram. The resulting playability-force
diagrams may be used as an aid to control of the sound synthesis algorithm.

Keywords: bowed string synthesis, parameter mapping, virtual instrument control, Schelleng
diagram, playing regime classification



Bow control and playability of a two-polarisation time
domain physical model of a bowed string

1 Introduction
Bowed string playing is characterised by the high sensitivity of produced notes to small varia-
tions of bowing parameters. This allows an experienced player to have remarkable expressive
control, whilst presenting the novice musician with significant challenges [1]. The ease with
which a stable and desired note can be produced on a bowed string instrument is often re-
ferred to as the playability of the instrument [2]. This can be quantified by the breadth of the
bowing parameter space that gives rise to Helmholtz motion [3] in the bowed string, which is
characterised by a stick-slip cycle at the fundamental frequency of the string.

Numerous studies have investigated the playability of bowed strings, both experimentally [4, 5]
as well as on virtual strings [6, 7]. Three control parameters have most frequently been used:
the downwards/vertical bow force, transverse velocity, and bow-bridge distance. Schelleng [8]
was the first to theorise analytical limits for the minimum and maximum bow downwards force,
for given values of the two other parameters, outwith which Helmholtz motion is unattainable.
He introduced a well-known graphical representation of the ‘playable’ region in the bowing
parameter space, now commonly referred to as a ‘Schelleng diagram’. Schelleng’s analysis
was recently revised by Schoonderwaldt et al. [9], who in particular found no clear dependence
of the minimum bow force on bow velocity.

The control of physical modelling synthesisers remains a challenge. Models based on the be-
haviour of real instruments should exhibit both musically desirable and undesirable responses
to user input, as seen in the physical objects they imitate. Evaluation and understanding of
playability is therefore paramount for such synthesisers, particularly for virtual bowed strings.

In this work, a physical modelling algorithm of a string excited by a lumped, dynamic bow is
presented. Three bow control parameters are employed, which each take the form of a time
series: bow-bridge distance, downwards force, and transverse force exerted onto the bow. This
is a departure from the usual bow-velocity control, and arises from the inclusion of an inertial,
dynamic bow model. A modified graphical representation for playability is derived, adapted to
this force-force control space, and based upon classification of the playing regime established
after the initial transient phase. This is found to bear resemblance to the widely used force-
velocity diagrams. Such a representation is potentially of use to players, who ultimately control
all bow parameters during playing through the application of forces.

Section 2 describes the bowed string physical model and its numerical resolution. Section 3
outlines the approach taken for parameter exploration, and the method used to determine the
playing regime achieved by the model in each case. Section 4 presents results of the analysis
through graphical representations of the playable parameter space. Finally, Section 5 contextu-
alises the results and discusses possible applications and improvements.

2 Two-polarisation bowed string model
The physical model used in this study is that of a simplified two-polarisation isolated linear
string, simply supported at both ends, interacting with a lumped dynamic bow. The full model,
numerical methods, and synthetic sound outputs are described in detail in a previous publica-
tion [10]. This section will briefly describe the key elements and control features of the model.

2.1 Model description

Consider an isolated, linear, stiff, lossy string, of length L (m), linear mass ρ (kg/m), tension
T (N), bending stiffness Bs (N.m2), damping coefficients λ1 (1/s) and λ2 (m2/s). w(x, t) and
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u(x, t) are the transverse displacement of the string in the directions, respectively, perpendicular
(vertical polarisation) and parallel (horizontal polarisation) to the bow-string plane. They are
functions of position x ∈ [0,L] and time t ∈ R+.

This string is excited by a lumped bow of mass MB (kg), at a fixed position xB, reflected in
the Dirac distribution JB = δ (x− xB); wB(t) and uB(t) are the position of the bow in the vertical
and horizontal polarisations, respectively. The bow is subjected to external forces by the player
in these two directions, respectively fext,w(t) and fext,u(t), and to linear losses in the horizontal
polarisation, quantified by the coefficient λB (kg/s).

The equations describing the evolution of the string displacement and bow position are:

L w =−JB fB (1a)
L u =−JB [ fB]+ ϕB (1b)

MBẅB = fB + fext,w (1c)
MBüB =−λBu̇B +[ fB]+ ϕB + fext,u (1d)

L = ρ∂
2
t −T ∂

2
x +Bs∂

4
x +λ1ρ∂t −λ2ρ∂t∂

2
x (1e)

where ∂t , ∂x are partial time and space derivation, respectively, and [·]+ = max(·,0). fB(∆B)
is the contact force exerted by the bow on the string, given by a penalty nonlinear damped
collision model [11]:

fB =
Φ̇B

∆̇B
+ ∆̇BΨB ΦB =

KB

αB +1
[∆B]

αB+1
+ ΨB = KBβB [∆B]

αB
+ ∆B(t) = w(xB, t)−wB(t)

where KB > 0, αB > 1 are collision coefficients related to the stiffness of the bow hair; βB > 0
quantifies the nonlinear damping in the collision interaction.

The friction force exerted by the bow on the string is given by a friction coefficient ϕB (vrel)
depending on the relative velocity vrel(t) = u̇(xB, t)− u̇B(t) between the string and the bow, mod-
ulated by the normal bow force fB. ϕB (vrel) is given by [12]:{

|ϕB|6 1.2 if vrel = 0 (static)

ϕB = sign(vrel)
(

0.4e
−|vrel|

0.01 +0.45e
−|vrel|

0.1 +0.35
)

if vrel 6= 0 (kinetic)

2.2 Discretisation and numerical resolution

The system (1) is discretised by the means of an implicit energy-balanced finite difference
scheme [10], allowing the derivation of a recurrence equation in time. The state of the system
is updated at an audio sample rate, computed from two preceding time steps.

Beyond the bow position along the string xB (static during each simulation in the present study),
the available dynamic control parameters are the forces exerted on the bow by the player in
the two polarisations, fext,w(t) and fext,u(t) (discretised at audio sample rate into a pair of time
series). The former will directly set the normal bow force, often referred to as ‘bowing pressure’
by musicians. The latter will dictate the transverse/horizontal bow velocity, through interaction
with the string’s friction characteristics.

Consequently, a bow force vector ~fext can be defined, whose orthogonal components are given
by the normal/vertical and transverse/horizontal components of force, fext,w and fext,u respec-
tively (see Figure 1). Such a description emphasises the role of the player in providing control
through application of forces on the bow, from which all further quantities, such as bow velocity,
and string dynamics, eventually arise.
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Figure 1: Bow control for this model is describable through the magnitude
∣∣∣~fext

∣∣∣ and angle θ of an external force vector
acting on the bow.

3 Parameter exploration
3.1 Playability of a bowed string and graphical representation

The standard tool for playability analysis of bowed strings is the so-called Schelleng dia-
gram [8], introduced as a two-dimensional logarithmic plot of the theoretical minimal and maxi-
mal bow force limits versus bow-bridge distance, for a given bow velocity. Each of these limits
form a straight line in this logarithmic parameter space, delimiting a triangular area within which
Helmholtz motion is attained. Beyond these limits, other vibration states arise, such as:

• Raucous motion, when the downwards bow force is high for a given transverse bow ve-
locity and bow-bridge distance, preventing the string from detaching from the bow at the
end of the sticking phase, and giving rise to a rough, noisy sound.

• Multiple slipping, when the downwards bow force is too low for a given transverse bow
velocity and bow-bridge distance, preventing the bow from sticking to the string for the
entirety of the nominal sticking phase, and often characterised by strong even harmonics
in the produced note, as the string slips several times per nominal period.

• Anomalous low frequencies (ALF), beyond the maximal downwards bow force limit, when
the Helmholtz corner is reflected once or more between the bow and nut before trigger-
ing slipping, resulting in oscillations at, typically, integer multiples (or slightly less) of the
nominal period; the so-called secondary waves (ripples) reflecting between the bow and
bridge could also yield another type of ALF, with a shorter period lengthening, correlated
to the bow-bridge distance [13].

• S-motion, observed for high downwards bow forces and bow-bridge distances, charac-
terised by high-amplitude ripples [14].

3.2 An alternative approach: playability-force diagrams

The main difference between the control of classic bowed string models, and the model pre-
sented here, is the transverse bow control. The conventional control parameter is the ‘imposed’
transverse bow velocity. The present model, however, uses a time series describing the force
applied to the bow. As noted in Figure 1, the bow parameters that give rise to steady Helmholtz
motion, or any other playing regime, can therefore be described in terms of the magnitude and
angle of this bow force vector.

In his study of steady-state oscillations, Schelleng [8] chose a particular representation of the
parameter space and bow force limits, as a function of the bow-bridge distance, for a given bow
velocity. However, as noted in his original work, one could also plot the vertical bow force as a
function of the bow velocity, for a given bow-bridge distance. An obvious layout for visualising
the parameter space in the present framework immediately arises: the bow force vector can be
represented in a playability diagram, with its transverse component fext,u on the horizontal axis
and normal component fext,w on the vertical axis, and with the origin of the graph (chosen to lie
at the top right of the axes) corresponding to the origin of ~fext (i.e. application of zero force). An
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example of this ‘playability-force diagram’ is shown in Figure 2. In terms of conventional bow
force limits, the apex of the bow force vector might be expected to navigate a two-dimensional
valley in the bow force parameter space, within which steady Helmholtz motion is possible.

3.3 Generating the simulated data

A large number of simulations were run using the algorithm described in Section 2.2. Ten data
sets were obtained, for ten static bow positions xB, determined relative to the string length. The
ten positions were chosen as integer ratios, xint

B , of the string length, for xint
B values from 5 to

14, so that the bow was positioned at 1/xint
B of the string length away from the bridge.

For each of the ten positions, the downwards bow force fext,w was incrementally varied from
0.02 to 3 N in 0.02 N steps (150 different force values), and the transverse bow force fext,u was
varied between 0.05 and 6 N in 0.05 N steps (120 different force values), amounting to 18000
simulations per bow position. Each simulation lasted for 3 seconds, with the downwards bow
force applied at t = 0, and the transverse bow force ramped up to its target value at t = 1 s. This
delay allowed any initial string oscillations, caused by the application of the downwards bow
force, time to settle. The playing regime classification routine examined the simulation output
from 1.8s after application of the transverse bow force, i.e. well after the starting transient.

3.4 Steady-state classification

Automatic classification of bowed string playing regimes has been attempted numerous times [2,
15, 16, 17, 18]. The approach taken varies according to the data available. For experimental
measurements, it is not usually possible to have direct information about the stick/slip behaviour
at the point of bow-string contact (i.e. the actual relative velocity of the bow-string coupling
point). Rather, analysis must be based upon time histories of the string velocity, or, most com-
monly, through a measurement of the force applied by the string to the bridge, through use of
an accelerometer or vibrometry system. In the simulated world, however, it is straightforward to
obtain the relative bow-string velocity at the bowing point, so providing direct information about
the bow-string dynamics. The present classification routine is based entirely upon analysis of
this relative bow-string velocity signal, vrel(t), obtained from the simulations.

The approach uses autocorrelation to identify periodicity, and is broadly in line with the method-
ology outlined by Woodhouse [17], with one notable difference. Rather than applying an au-
tocorrelation analysis directly to vrel, a peak-finding algorithm is first applied to vrel to identify
moments of maximal ‘slip’ within the stick/slip cycle. The timing and amplitude of these peaks
are used to create a ‘quantised’ version of vrel, called vq

rel, that consists of zeros everywhere
except at moments of maximal slip, where vq

rel has a value equal to the maximal slip amplitude.

Autocorrelation analysis is applied to the quantised relative bow-string velocity vq
rel, over a win-

dow of 40ms, beginning 1.8s after application of the horizontal bow force. This window covers
several cycles of the anticipated fundamental period of the string. Autocorrelation of this quan-
tised signal produces an autocorrelation function (ACF) that is itself of a quantised nature, with
broad regions of zero-amplitude, interspersed with correlation peaks. Analysis of the location,
spacing and spread of these peaks led to a number of relatively simple rules/checks allowing
classification of each simulation run into one of six categories: constant slipping (where the
bow slides smoothly over the string, with no clear stick/slip cycle), constant sticking (where the
transverse force is too small to keep the bow moving, the bow stops and remains permanently
stuck to the string), Helmholtz motion, multiple slipping motion, anomalous low frequencies
(ALF), and raucous behaviour. The detection of S-motion was not included in this study.
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Figure 2: An example playability-force diagram. Each simulation was examined 1.8s after initial application of the
horizontal bow force, and categorised into one of six playing regimes. Typical string displacement and associated
relative velocity waveforms are shown for each of the four detected stick-slip regimes. The diagonal black and blue lines
on the diagram mark the estimated minimum and maximum bow force angles, respectively, between which Helmholtz
motion is reliably obtained from the simulation, regardless of bow force magnitude.

4 Results
4.1 Bow force vector range and areas of interest

The playability-force diagrams mostly appear divided into approximately triangular regions. The
Helmholtz-playable region (Figure 2, in green) is circumscribed by two limits. Below, there is an
almost linear separation, corresponding to a particular angle of the bow force vector, between
Helmholtz motion and raucous behaviour (in red). Careful listening of simulations on either side
of this division suggests the classification algorithm is robust. Above the Helmholtz region, the
transition into the multiple slipping region is generally less distinct, especially for very low/high
bow force vector magnitudes (i.e. close to, or far away from, the origin). This suggests a more
ambiguous transition between Helmholtz motion and multiple slipping at low downwards forces.
Within the raucous area, one or more triangular-shaped ALF areas (in yellow) appear for all
values of xB.

The clearly defined, and apparently linear, maximum downwards bow force limit, within the
analysis framework used here, suggests a possible definition of the lower limit of the playable
space in terms of the bow force vector angle only, independently of its magnitude. With the
aim of clarifying the playability of the model as a sound synthesis tool, a ‘soft’ upper limit can
similarly be drawn from the origin, bounding an angle range where Helmholtz motion is reliably
achieved regardless of bow force magnitude, and excluding all occurrences of multiple slipping.
Figure 2 shows these upper (in black) and lower (in blue) limits.

4.2 Evolution of the playable range with bow position

Figure 5 presents all ten playability-force diagrams, for fractional bow-bridge distances from 1
5

to 1
14 of the length of the string. All regions of the diagram seem to rotate counter-clockwise

around the origin as the bow gets closer to the bridge. Both lower and upper downwards
bow force limits shift towards higher values. The raucous/ALF section narrows, as the multiple
slipping area expands, confirming the need for higher downwards forces to trigger Helmholtz
motion as the bow-bridge distance decreases. The lower downwards bow force limit, separating
multiple slipping and Helmholtz regimes, appears increasingly linear as the string is bowed
nearer the bridge. Within the multiple slipping region, various ‘pockets’ of Helmholtz motion are
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Figure 3: Relative membership counts for detected playing
regimes for varying bow position.
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vs. bow position.

seen to appear, change size, and rotate anti-clockwise with decreasing bow-bridge distance.

To get a better sense of how playability might evolve with decreasing bow-bridge distance, and
to relate the behaviour of this model to a more conventional Schelleng analysis, two quantities
are plotted against bow position. Figure 3 shows the evolution of the relative area of each
detected regime versus bow position, by counting, for each bow-bridge distance, the number
of cases belonging to a particular category. The result summarises one of the most obvious
trends seen across the playability-force diagrams, which is the progressive rise in cases of
multiple slipping with decreasing bow-bridge distance. Furthermore, beyond a peak in xB of 1

6 ,
the Helmholtz region gradually shrinks.

Figure 4 shows the variation of the angular range of the bow force vector giving reliable
Helmholtz motion, with decreasing bow-bridge distance. This is evaluated by measuring the
respective angles of the dark blue and black lines used to delimit a reliable Helmholtz-playable
range independently of the bow force magnitude (see Figure 2), as described in Section 4.1.
While the minimum and maximum bow angles both increase with decreasing bow-bridge dis-
tance, the playable angle range does not seem to follow a clear and systematic trend. Indeed,
the variations in playable range cover just a few degrees, which is close to the uncertainty in
the assignment of the upper line, bounding the Helmholtz and multiple slipping regions. Further
work is required to explore and quantify the characteristics of this upper transition zone.

4.3 Anomalous low frequencies

An ALF band (in yellow) seems to appear on all diagrams, suggesting a ‘playable ALF region’
rather than random, sparsely located cases, in line with previous findings [9]. This ALF region
moves around the raucous region with varying bow position, surrounded by raucous cases
further from the bridge, and shifting progressively in an anti-clockwise direction towards the
bridge. Eventually it provides a clear separation between raucous cases at lower vertical bow
forces, and constant sticking at higher vertical bow forces (e.g. for xB from 1

8 to 1
14 ).

For xB = 1
5 (Figure 5, top left), two triangular bands can be observed within the raucous tri-

angle. One of them, in yellow, corresponds to the first type of ALF described in Section 3.1,
where the fundamental period is almost doubled. The second one, in green, was automatically
classified as Helmholtz motion, as the classification algorithm tolerates a moderate amount of
pitch flattening. However, closer inspection of the waveforms shows what could be the sec-
ond described type of ALF, due to ripples reflecting between the bridge and bow, where the
pitch is lowered by about one semitone. Without further analysis, this second band becomes
undistinguishable from pitch-flattened Helmholtz motion for smaller bow-bridge distances.
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5 Discussion
This paper presents a physical model of a bowed string, where the bow is driven by a force
vector with a downwards and a transverse component. The numerical methods for solving the
partial differential equations describing the bow-string system allow for the simulation of the full
string displacement, as well as the inclusion of important nonlinear effects. However, the sound
synthesis algorithm is difficult to control intuitively. This study provides an initial exploration
of the range of bowing parameters giving rise to various steady-state oscillation regimes in
the simulated bowed string. A tool is developed in order to visualise the playable space of
this particular model, through a systematic regime classification, producing a playability-force
diagram inspired by the widely used Schelleng diagrams.

The resulting plots indeed show some similarities with Schelleng diagrams, in that a triangular
Helmholtz-playable area can be observed, in terms of downwards and transverse bow force
components. This area is bounded below (high downwards force) by a clear zone of raucous
and ALF behaviour, and above (low downwards force) by a less clearly delimited multiple slip-
ping zone. The less defined transition between the Helmholtz and multiple slipping region could
result from the progressive character of the transition between Helmholtz motion and multiple
slipping, as observed in [9]. Many of the cases shown in Figure 5 that lie on the edge of the
Helmholtz/multiple slipping region, and even clearly beyond, exhibited clear transitions between
Helmholtz and multiple slipping behaviours over the course of 2s of simulation time. Analysis
based upon the string behaviour after 1.8s of run time is clearly a somewhat arbitrary choice,
especially for these cases. Re-analysis of the whole dataset based upon a different analysis
window would certainly produce a different set of playability-force diagrams. Indeed, it seems
logical to extend the present work to examine the transient characteristic, along the lines of
Guettler and Askenfelt [19], the subtle evolution of which is certainly vital in determining the
later steady/transitionary playing regime.

The results of the proposed analysis are first and foremost intended to be used as a tool
for guiding sound synthesis with the bow-force-controlled physical modelling algorithm. Before
any comparison can be made with real bowed strings, it must be considered that the physical
model used for this study is missing some arguably essential features, potentially having great
influence on playability, e.g. a finite bow width, a better calibration of the damping coefficients to
match the string loss profile in the frequency domain, and perhaps most importantly, a mobile
bridge boundary, coupled to a realistic bridge-body model. The influence of torsional waves,
not considered here, on playability, has been studied on real [20] and virtual [6] bowed strings.

The analysis of minimum and maximum limits to determine the playable range of the bow force
angle is acknowledged as requiring further refinement, but is nevertheless an interesting result
for the physical model employed. A regression analysis could help to more accurately measure
the evolution of the bow force limits bounding the Helmholtz range with varying bow position,
further clarifying the observations of Section 4.2.

This exploratory study is a first step to several applications and extensions. First, in terms of
sound synthesis, a database of compiled diagrams for a range of strings with known physical
parameters could be stored, and used as part of a collection of presets for the sound synthesis
of particular strings. The scale, resolution, and repeatability of the simulations could also allow
exploration of the influence of a particular parameter or bowed string feature on the size and
shape of the Helmholtz-playable space.

An advantage of the force vector representation is that the same bowing parameters, and
therefore the same existing data sets, can be used for transient analysis. Indeed, while a
constant transverse bow force fext,u results in a constant bow velocity (due to damping terms),
a step onset of such a force is arguably comparable to the application of an initial transverse
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acceleration to the bow, which is the control used for transient analysis by Guettler [21]. A
similar diagram to that used for steady-state analysis can now be drawn, to explore the range
of initial bow force angles and magnitudes yielding an ‘acceptable’ transient [19].
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